If it's not what You are looking for type in the equation solver your own equation and let us solve it.
25p^2-20p-21=0
a = 25; b = -20; c = -21;
Δ = b2-4ac
Δ = -202-4·25·(-21)
Δ = 2500
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{2500}=50$$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-20)-50}{2*25}=\frac{-30}{50} =-3/5 $$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-20)+50}{2*25}=\frac{70}{50} =1+2/5 $
| 2(y-10)=0 | | -3x+2=2x=37 | | 7x+2(7x-12)=123 | | 93=3(z+11) | | 7(p+3)=21 | | 3-1=7x | | 5t-21=37 | | 16-5n=16 | | -2-15v=12 | | 64^(7x−8)=1 | | 6-5p=3 | | 13m-9=22 | | -9=3(b+4 | | -7y/3y-8=13 | | 13-7x=27 | | 18=9+3g | | -15n-9=16 | | 440=-5(-8x-8) | | 23-15b=8 | | -10(6x+22)=-520 | | 10(6x+22)=-520 | | 3-8=15p | | 420=-7(7x-4) | | 585=-9(10x+5) | | 26-8=3v | | 30=-6(5x+20) | | 5(-6x-6)=120 | | -10(6x+21)=570 | | -680=10(6x+4) | | 3(x-+3)=x+1 | | -4x-5x=180 | | 8x+4+7x-2+6x+10=180 |